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Abstract

A recently developed method for the calculation of Lyapunov exponents of dynam-

ical systems is deocribed. The method is applicable whenever the linearized dynamics

is Hamiltonian. By utilizing the exponential representation of sympkctic matrices,

this approach avoids the renormalization and reorthogonalization procedures neces-

sary in usual techniques. It is also ●asily extendible to damped systems. The me~hod

is illustrated by considering two examples of ohysical iaterest: a rnudel system that

describes the beam halo in charged particle beams and the driven van der ?o1 oscil-

lator.
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1 Introduction

Chaotic dynamical systems exhibit exponential divergence of initially nearby trajecto-

ries. This divergence is quantified by the Lyapunov exponents of the system which are

obtained from linearizing the dynamics around a fiducial trajecto.~ [1]. Over the paat

two decades or so there has been “intense activity” [2] directed towa~d the compu-

tation of these exponents resulting in severel differant numerical approached [1][3~[4].

The two obvious difficulties associated with the computation of Lyapunov exponents

are: (1) exponential growth of the separation \.ector (between the fiducial and nearby

~rajmtoriea) ~d (2) the ~Ponentid Co]lapse of initiall:~ orthogonal separation vectors

onto the direction of mucimal growth. Most conventional methods overcome these

hurdles by intermittent numerical resealing and reorthogonalization (through, e.g.,

the Gramm-Schmidt procedure [3]). Manv chaotic systems are Hamiltonian or they

can be transformed into a Hamiltonian system by suitable manipulations. However,

none of the above general methods are designed to take advantage of this fact.

As is well known, the dynamics of classical Hamiltonian systems haa an underly-

ing symplectic structure [5]. In recent years symplectic methods have been applied

with great success to classical dynamical problems. The field of accelerator dynamics

has been revolutionized by the introduction of nonlinear symplectic maps as repre-

sented by Lie transformations [6][7]. Very long time integration of charged particlr

and planetary systems has been aided by the development of high order symplectic

integration algorithms [8]. Recently a symplectic map-based approach for the calcu-

lation of Lyapunov exponents haa been developed [9]. As shown below, this approach

obviates analytically the Leed for resealing and

computation of the exponents.

Z The Method

reorthogonalizat ion in the numerical

Consider a 2-m dimensional continuous-+.ime dynamical system governed by the equa-

tions
da
— = F(z, t),
dt

where z = (z~,z~, ““., za~) and similarly for F.

trajectory. Define deviationri from this trajectory

(1)

Let ZOdenote some given fiducial

by letting Z = z – Zo, and linearize

the above equations. The new set of equations for the deviation variables is

dZ
— = DF(zO, t) ~Z.
dt

(2)
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The approach described below can be used whenever tfiis linearized set of equations

is derivable from a Hamiltonian, From now on suppose that this is the case, and that

one can write Z = (91,92,””” !%) P1)PZI ””” , pm), where qi and pi denote canonically

conjugate coordinates and momenta, respectively. It

dZ
~ = –{h, z],

where {, } denotes the Poisson bracket, and where

follows that

(3)

H is a homogeneous quadratic

polynomial in the qi and pi. A system such as this is governed by a syimplectic matrix

M that maps the initial variables Zi” into time-evolved varkbles Z(t),

z(t) = M(t)z’? (4)

Let A be given by

A = ;.% [Mif) ’J” , (5)

where ~ denotes the matrix transpose of M. The Lyapunov exponents then equal

the logarithm of the eigenvalues of A [i].

It is easy to show that M satisfie~ the equation of motion (See, for example, Ref.

[11])
dM
— = JSM,
dt

(6)

where S denotes the symmetric matrix given by

lk
~.(z,t) = ~ ~ ~ijzizj) (7)

i,j=l

and where

J
()

01
=

–lo’
(8)

Here 1 denotes the m x m identity matrix. It follows that the evolution of Mm is

governed by the equation

;MM = JSMM – MMSJ. (9)

Standard methods for obtaining the Lyapunov exponents deal with Al, which is not

real symmetric (hence the need for reorthogonalization) and which has exponentially

growing elements. To avoid these difficulties one exploits the fact that M is syrnplectic

by making use of the exponential representation of symplectic matrices [ii]: Any

symplectic matrix M can be written in the form

M = e’s”e’s’ (10)
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where Sa is a symmetric matrix that anticommutes with J and S= is another sym-

metric matrix that commutes with J. It is important to note that the second matrix

on the right hand side of (10] is in fact unitary. so that

MM = e2JsS. (11)

Note that this matrix has fewer degrees of freedom than M and its eigenvectors are

orthogonal. Rather than attempting to directly integrate dqn. (9) which would still

have a ‘.arge numbers problem, focus attention instead on the exponent JS. in Eqn.

(10). It is clear that now there is no large numbers problem since JS. already appears

as an exponent.

To procecr’ further, one obvious approach is to use an explicit representzi tion of

exp(JSo). Such a representation is well known for Sp(2) and has recently been found

for Sp(4) (see the Appendix). Generalizations to Sp(2m) are in progress [10]. To

illustrate the method it is convenient to restrict attention to systems with a two-

dimensional phase space. When driven, these represent the simplest continuous-time

systems that can exhibit chaos. ‘l’he moth general twc+dimensional symplectic matrix

can be written in the form

M= eJS. eJS.

= &(&cwa+Ba sina)ebkl,, (12)

where a, b and p are real coefficients and where the Bi are basis elements of the Lie

algebra sp(2) [6]:

Bl=(:,) B2=(;:),B3=(::,). (13)

It follows that

~~ = eU4% cwa+B~ mina) (14)

Thus, one obtains,

A = ~~~ e@f~Jf~’ctio+~’ ‘i”]. (15)

Finally, it is easily shown that the eigenvalues of this matrix are e*~j~. The Lyapl.lnov

exponents arc then equal to +p/t in the limit t + m. With this convenient chmce

of variables, the explicit representation of itf~ is given by

Miif =
(

cosh 2p + sin a sinh 2p cos a sinh 2p

cos a sinh 2p )coHh2p – sin a sinh 2p “
(16)

The unknown quantities a and p can grow in

equations for these quantities can be obtained by

equation for Mfr.

4

time at most as

returning to Eqn.

O(t). Differential

(9), the dynamical



Forsimplicity, assume that H contains no term proportional toqp, so that the

matrix S in (7) is of the form

s=
()

Sll o
0 s~~ “

(17)

After some manipulation, Eqns. (7)-(9) lead to the foll~wing:

dp

z
= ; (9,2 – S,, )cosa,

da

x
= 911 + .~za– (s22 – sll)sinacothp. (18)

from the initia! condition M(O) = 1, if one chooses P(O) = O, then Cosa a(Ol = 1, i.e.,

a(0) = Oor ‘r. These differential equations form the basis of the method for calculating

the Lyapunov exponents of Harniltonian systems: They are stepped forward in tim z

numerically till some desired convergence for the exponents, +IJ/t, is achieved. It will

be shown later how to apply

3
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Applications:

first concrete example,

the method to certain non-Hamiltonian systems.

Two

consider

Examples

the newly developed “core-halo” model which

charged particle beams [121. The transversedescribes beam halo in misr.?atrhed

equa:ion of motion for a halo particle in this model, assuming constimt external

focusing, is

i + z – \l – qa)f(z,r(t)) = o

where z is the position variable for a halo particle, ~(z, r(t))

space charge of the beam core, and r(t) is the time depmdent

The core radius is assumed to follow the envelope equation

l–q2 qz
++r –—–—=0.r r3

(]9)

is the force due to the

rrns radius of the core,

(20)

Here units have been chosen so that the time independent solution of (?0) (i. e , +

matched beam) is given by r = 1, In these units q = Ocorresponds to the space charge

dominated regime, while q = 1 corresponds to the emittance dominated regime. Ncw

assume

f(~)r) = ~~ ;.ra (21j

which has the correct asymptotic behavior: the force is linear when z < r, arid it is

inversely proportional to z when z > r. The Eqns. (19) and (20) describe a driven

nonlinear system with a mixed phase space aa demonstrated by the stroboscopic
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l?igurc 1: Stroboscopic pl~t of :he chaotic sea in the cam-halo model. Sr.iapshots were

taken at successive beam minima for 32 test particles. Parameter values were r(0) = 0.6,

#(O) = O, and q = 0.2.
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Figure 2: Positive Lyapunov exponent for the core-halo model in a typical run. Pararneter~

are the same an in Fig, 1, The simulation was run for 10s periodm of the driving force

using 100 integration steps pcr period for Eqno. (18) with a third-order Runge-Kutta

algorithm, The envelope equation and the fiducial trajectory were integrated with a fourtil-

ordcr symplect ic algorithm using 200 steps per period.
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plot shown in Fig. 1. The presence of a chaotic band is ~mportant because particles

initially in the core can leak through the broken separatrix and be carried to large am-

plitudes. The piesence of such large amplitu Je particles can cause unacceptably high

radioactivation levels in high intensity linacs planned for future accelerator-driven

technologies [13]. Leakage through the separatrix can be enhanced through particle

collisions and recent work has shown that this rate is controlled by the Lyapunov ex-

ponent [14]. The Lyapunov exponent for this system maybe computed by integrating

(18) with

Sll = 1 -(1 -q’) (=8 :,2- J@,),)

322 = 1 (22)

where X. denotes the fiducial trajectory. Fig. 2 displays the result for the Lyapunov

exponent agah.tat time. The slow cmvergence of the exponent to its asymptotic value

is typical of Hamiltonian systems.

So far only explicitly Hamiltonian systems were considered. However, the only

real requirement for using t“he method is that the linearized deviation equations in

some variables be Harniltonian. This al!ows for the inclusion of dar.lped systems in

the scheme. As an example, consider the following general driven nonlinear oscillator

5 + A (1 – cz~) i + v’(z)= Ucos(wt). (23)

By appropriate cheices of J, c, ud V(Z), this reduces to an assortment of well-

krmwn equations including van der Pol (~ < 0, ~ = 1, V(Z) = (1/2)zz), Dufing

(A>o, t = O,V(Z) = aZ2 + @4), and the damped driven pendulum (A >0, e = O,

v(z) = 1 – COS(Z)). In terms of the deviation variable 6, the linearization of (23)

yields

~ + J (1 – ~~:ji + (v’’(zO)- 2tkoio) t = o (24)

where Z. represents the fiducial trajectory, Introducing the new variable A defined

througti

~ = &-d~) (25)

where

j= -;A (1 - ma) , (26)

Eqn. (24) reduces to that describing an undamped oscillator with time dependent

frequency,

(
A + V“(ZO) – &OiO - ~Aa (1 a)a) A = O.—Exo (27)
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It is now straightforward to proceed in the usual way: tor

Ly~ nunov exponents X* of thi: system are given by

where ~ follows from solving (18)

x* =

linear damping (c = O) the

(28)

by (27). When c # O,

(29)

modulo terms that are exponentially suppressed at !.ate times.

Figs. 3(a) and 3(b) show the Lyap-mov exponents of the van der Pol system. For

the chosen set of parameters these results are in agreement with those of Ref. [4]. In

contr~t with the results shown in Fig. 2, the convergence of the exponentn is much

faster, as is typicsd of non-weakly damped systems.

4 Conclusion

To summarize, a method for computing Lyapunov exponents that exploits the un-

derlying symplectic structure of Hamiltonian dynamics hsa beeri reviewed. Just aa

symplectic integrators are not a panacea for all time integration problems, this method

does not have universal applicability and advantages. However, when applicable, the

method has certain advantages over standard techniques, most importantly the lack

of systematic errors associated with intermittent reorthogonalization and resealing.
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Figure 3: (a) Ponitive Lyapunov exponent for the van der Pol oscillator with parameters

A = –5, a = 5, and w = 2.466 (taken from Ref. [4]). The simulation was run for 105 periods

of the driving force using 100 million time steps for Eqnu. (18) and 200 million time steps

for the fiducial trajectory. The integrators were third-order Runge-Kutta and fourth-order

symplectic, respectively.

,.

Figure 3: (b) Negative Lyapunov exponent for the van der Pol oscillator with the same

parameters as in Fig. 3(a).
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A Appendix: Summary of Sp(4) Results

There exists a particularly convenient way of organizing the basis elements of sp(4)

in terms of a triplet of matrices (the Fij G,, and the Bi) eacri triplet consisting in

turn of three matrices. The B, belong to t5e unitary sector which iq h-relevant to the

computation of the Lyapunov exponents. The most general (4 x 4) symplectic matrix

then turns out to be of the form exp(a - F + b . G) times a unitary matrix, where

a = {a,, aa,aa}, b = {h, k k}

F = {F’,,F’2,F3}, G = {Gl,GalG3}. (30)

Here, the % and the k are scalars, and the explicit forms of the matrices F’..and Gi

are given below.

It turns out to be possible to resurn the formal exponential above and to obtain

the following result [10]:

M= exp(a-F+b” G)

= ~(cosh[u=] + cosh[~])I

-1
+Z(sch[u=] + sch~~]) (a. F + b” G)

+ (u:: u:)
(cosh[u=] - cosh[~]) (a x b) . K

~ ~,)(sch[u=] - mh[uJ)([b x (a x b)] , F + [a x (b x a)] . G) (31)
+ (u: ,

where ‘. n represents the usual vector dot product, ux n represents the vector cross

product, I is the (4 x 4) identity matrix and

% = Jm=G,
s’ = a“a+b, b,

v’ = (ax b). (ax b). (32)

A new triplet of matrices, the Ki appears. This is because the Fi and the Gi do not

form a closed subalgebra. The Ki are idempotent and unitary. Note that all the Fi,

Gi and Ki are traceless. Thus, quite trivially, 2%(M) = 2(cosh[u=] + cosh[uu]) and

the eigenvalues of M are exp[u=], exp[–u=], exp[uv], exp[–~].
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Finally, the explicit forms of the above matrices are given by:

FI =

G1 =

o –1 o –1
–1 o –1 o
0 –1 o 1
–1 o 1 0

0 –101

-1010
0 101
1 010

,Fa=

,G2=

1010
o–lo–1
10 –1 o
0 –1 o 1

10 -1 0
0 –1 o 1
–1 o –1 o
0 1 01

[)
10 -1 0

,F3=
(-l 1 0 –1
-1 0 –1 o
0 -1 0 -1

(34)

v
–1 o –1 o

,G3=
o –1 o –1
-1 0 1 0

[0 –1 o 1
(35)
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